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Abstract

Using a level set method we develop a topological shape optimization method applied to power flow problems in
steady state. Necessary design gradients are computed using an efficient adjoint sensitivity analysis method. The bound-
aries are implicitly represented by the level set function obtainable from the “Hamilton—Jacobi type” equation with the
“Up-wind scheme.” The implicit function is embedded into a fixed initial domain to obtain the finite element response
and sensitivity. The developed method defines a Lagrangian function for the constrained optimization. It minimizes
a generalized compliance, satisfying the constraint of allowable volume through the variations of implicit boundary.
During the optimization, the boundary velocity to integrate the Hamilton—Jacobi equation is obtained from the opti-
mality condition for the Lagrangian function. Compared with the established topology optimization method, the devel-
oped one has no numerical instability such as checkerboard problems and easy representation of topological shape
variations.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

For the dynamic analysis of structural systems in high frequency range, the finite element method (FEM)
and boundary element method (BEM) to obtain the kinematic responses are not suitable due to the re-
quirement of mesh size that is closely related to the quality of analysis. Moreover, at high frequencies,
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the uncertainty of system parameters gets increased and consequently the quality of analysis results
becomes worse. Therefore, it is desirable to employ the statistical methods that predict the modal- and fre-
quency-averaged vibrational behavior of systems. Statistical energy analysis (SEA) is one of the methods
developed to overcome the difficulties in high frequency ranges. However, the SEA is well suited only
for high frequency problems with high modal density. Also it does not provide the spatial information
of energy distribution. Another alternative is a power flow analysis (PFA) method. The PFA method
regards “flow of vibrational energy” as “flow of heat” in thermal systems. Similar to the thermal problems,
the governing equation for the PFA is a parabolic partial differential equation. The PFA enables to predict
the spatial energy variation in structures and handle local damping. The PFA is originally devised by Belov
et al. (1977). Butlitskaya et al. (1983) used the energy equation developed by Belov et al. to investigate the
propagation of both vibrational and acoustic energy in structures. Recently, Nefske and Sung (1989) per-
formed a finite element implementation of vibrational energy equation. The developed power flow finite
element method (PFFEM) is used to predict the vibrational response of beams excited by point harmonic
forces.

Topology optimization methods enable designers to find a suitable structural layout for required system
performances. Ever since Bendsge and Kikuchi (1988) introduced the topology optimization using a
homogenization method, many topology optimization methods have been developed for both linear and
nonlinear structural problems in many disciplines such as solid mechanics, thermal, eigenvalue, and acous-
tic problems. Nowadays, the density method (Bendsee, 1989) is preferred due to its simple implementation
compared with the homogenization method. This method defines a bulk material density, regarded as the
design variable varying from zero (void state) to unity (solid state), to distribute the material in the contin-
uum design domain. In the level set approach for the topology optimization, keeping the material homo-
geneous in the domain, its boundary rather than the material distribution is varying to meet the
optimization requirements. Furthermore, there is no need to consider the checkerboard patterns of material
distribution which is one of the frequently encountered numerical instabilities in the established topology
optimization methods.

Since the topology optimization necessarily involves many design variables, the sensitivity of perfor-
mance measures with respect to the design variables should be determined in a very efficient way. The ad-
joint variable method (AVM) is computationally efficient especially for the problems that have many design
variables but small number of performance measures because their design sensitivity can be computed in a
selective manner (Haug et al., 1986). Thus it is widely used in the topology optimization problems. In this
paper, a continuum method for the boundary variations is considered. Recently, Kim et al. (2004) devel-
oped an efficient DSA method for the power flow problems in steady state.

Osher and Sethian (1988) have devised a level set method for numerically tracking fronts and free bound-
aries, which is used in many applications as motion by mean curvature. Sethian and Wiegmann (2000) dis-
cussed about the resolution of the boundaries. In their paper, an explicit jump immersed interface method is
employed to compute the response of two-dimensional linear elasto-static problems of complex geometries
without meshes. Also, they use the material removal and addition scheme. The removal rate determines the
closed stress contours along the new holes and the velocity of the boundary motion. Allaire et al. (2002)
described a new implementation of a level set method for shape optimization. In their formulation, the
compliance and target displacement objectives are considered. The algorithm creates no holes inside the
domain and converges to a local minimum which strongly depends on the initial topology. Wang et al.
(2003) developed a numerical procedure for topology optimization using an implicit moving boundary.
They represent the structural boundary using the level set model that is embedded in a higher dimensional
scalar function.

In Section 2, the governing equation and weak formulation for the power flow problems are discussed.
In Section 3, after defining a level set function and solving the “Hamilton—Jacobi” equation, the implicit
moving boundary is embedded in the weak formulation. In Section 4, we formulate a topological shape
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optimization for the power flow problems using the adjoint sensitivity and a gradient-based optimization
method. In Section 5, some demonstrative numerical examples for various cases are presented, which show
similar results in comparison with the established topology optimization method.

2. Power flow problems

Consider a structural body occupying an open domain Q bounded by a closed surface I as shown in
Fig. 1. All the material properties are assumed homogeneous and isotropic in the domain Q.
Boundaries are composed of an energy boundary I'“ and a flux boundary I'? such that

r‘ur'=r and I°nr'=é. (1)

The body is subjected to the rate of internal energy generation r and the following boundary conditions. A
prescribed energy density eg on I'° and a prescribed energy flux ¢o on I'? in the inward normal direction are
imposed. n is an outward unit vector normal to the boundary.

For an energy field e, the governing equation for the power flow problems in steady state is written by
G o2
— Ve + nwe =, (2)
nw

where e, 1, w, and ¢, are the time- and space-averaged energy density function, hysteresis damping factor,
exciting frequency, and group speed, respectively. For plate structures, the group velocity is defined by

4]w?D o 2ER
Cgfz‘\lﬁfz'\/ma (3)

where p, v, h, and D are the density, Poisson’s ratio, thickness, and flexural rigidity of plate, respectively.
The boundary conditions are applied as

e=¢ onl*® (4)
and
qg=gq, onlIY. (5)
The space Z for the trial solution is defined by
Z={eec[H'(Q)]" :e=e on I}, (6)

where d represents the dimension of problem and H'(€Q) is the Hilbert space of order one. The space Z for
the virtual field is defined by

Z={ec[H Q)] :e=0on I} (7)

I“L’
€

X3 pu=
n

- ML

Fig. 1. Structural body in space.
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Using the virtual field e that satisfies homogeneous Dirichlet boundary conditions, the weak form of Eq. (2)
is written as

c? _
/ — £ V%ee + nwee | dQ = / nedQ forallee Z. (8)
Q nw Q
Using the divergence theorem, Eq. (8) can be rewritten as
c? 2 _
/ —£ Ve - Ve + nwee dQ:/nédQ—/ ——£Ve| -nedl' foralleecZ. 9)
o \nw Q re nw
Defining a time- and space-averaged energy intensity I as
- %y (10)
= — o e

and an energy flux ¢ as

q =n- I7 (1 1)
Eq. (9) is reduced to
2
/ &Ve-Véﬂ—nweé dQ:/nédQ—/ gedlI' forallee Z. (12)
o \nw Q re
Defining a bilinear form
&2
ale,e) = / (—gVe -Ve+ nwee) de (13)
e \Nw
and a linear form
{(e) E/nédQ—/ gedr. (14)
Q rq
Eq. (12) can be rewritten as
Find e € Z such that a(e,e) = f(e) foralle € Z. (15)

3. Level set formulation

Let Q C R? be a bounded open domain with a smooth boundary I', at a generic configuration, (as shown
in Fig. 2)

Q=0yUQp, (16)

where Q and Qp, are a non-designable and a designable domains, respectively. The R? stands for a d-
dimensional real space. Imagine the boundary of domain I' moves in the direction normal to its boundary
with a known speed V,,. To derive the equation of moving boundary as time evolves, we embed this prop-
agating boundary as the zero level set ¢ of a (d + 1)-dimensional function &(¢, k). Given a closed d-dimen-
sional hyper-surface I' at zero level, we come up with a formulation for the motion of the hyper-surface I',
propagating along its normal direction with the speed V), at time 7. Let I'1 and Q; be an initial reference
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oy 77T

Fig. 2. Design domains and level set function.

boundary and domain, respectively. At time t = 0, assume the existence of a zero level set function ¢(x,0)
that is Lipschitz continuous and defined on 2y, satisfying
+{(x,I) xeQ,
o(x,7=0)¢ =0 xelrl, (17)
—((X,F) X € QI\§7
where {(x, ') is a distance from a point x to the boundary I', for all x € R. Also let I', and Q, be a moving
boundary and a corresponding domain at time 7, respectively. Define an evolving level set function ¢(x,,7)
that is Lipschitz continuous and also defined on €y, satisfying
+C(XT7FT) Xz S Qu
P(x:, )4 =0 x, € I, (18)
_C(Xrarr) Xz S Ql\ﬁra

where Qy represents an initial reference domain that includes all the possible domains Q., i.e.

Q. C Q. (19)
An outward unit vector n normal to the boundary I" is obtained by
V¢
n=——. 20
] 20
A curvature « is defined by the divergence of n, as
. V¢ )
k=divh=-V - [ ——). 21
(% 2y
Also, the area and length of boundary are obtained, respectively, by
Area(Q) = [ H($)dQ (22)
Q

and

Length(I) = / 8(¢)| V| de, (23)

Q
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where H(x) and §(x) are the Heaviside and Dirac delta functions, respectively, defined by

N I, x>0,
HE) = {0, x<0 24
and
d .
o(x) = aH(x). (25)

Consider a two-dimensional level set function ¢. We employ the level set method for the implicit repre-
sentation of boundaries. At arbitrary time, the level set model describes a surface in implicit form at zero
level as the iso-surface of a scalar function ¢ : R* — R embedded in three-dimensional space, as

S ={x: ¢(x,0) =k}, (26)

where k and x are an arbitrary iso-value and a point on the iso-surface ¢, respectively. At arbitrary time t,
the surface is represented as

S = {X; 1 ¢(x,,7) = k}. (27)

Using the expressions in Eq. (18) and taking the material derivative of level set function with respect to the
parameter 1 leads to the “Hamilton—Jacobi equation™ as

D¢ 0¢(x.,7 dx, 0¢(x,0 dx

Do _00nt ggx,, o)), L =200

Dt ot |, dr |, ot +Vox,0) dr 0 (28)

Note that the transportation of level set function ¢ is defined in the Lagrangian frame whereas the variation
of ¢ is done in the Eulerian frame. The mapping between two level set models, i.e. 7(x,7) : X — X(Xx), X € Q,
yields the design velocity field for the shape optimization as

X, =T(x,7) =x+1V(x,0) + - -+ (29)

and

= lim = X _ V(x,0) = V(x). (30)

Thus, Eq. (28) is rewritten by

0 0
‘f’gi_ ) _Ve(x,0)- V(x). (31)
Let V), be a speed function normal to the boundary. Using Eq. (20), we have
V¢

V,=V-n=-V(x) (32)

Vel
Substituting Eq. (32) into Eq. (31) and applying appropriate boundary conditions yield the following equa-
tions as:

0¢ o

P V.V, p . =0. (33)

Given a normal velocity field V,,(x), we can update the level set function ¢(x) at each time step by solving
Eq. (33) of the first order partial differential equation with initial values. For computational stability, the
“Up-wind scheme” (Sethian, 1999) is employed to solve Eq. (33).

4);’1.“ = ¢ + Atfmax{—(V,) 0}V" + min{—(V,),,,0}V7], (34)

ij ij?
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where
V* = {max(D;",0)* + min(D;",0)’ + max(D;,0)* + min(D;,0)’}’ (35)
and
v~ = {max(D}*,0)* + min(D;*,0)’ + max(D;’,0)* + min(D;",0)}*. (36)
Di‘, D,.fy , and At are the forward and backward difference operators on qb?j and a time step, respectively.
Embedding the obtained level set function ¢ into Eq. (15), the variational problem can be written as
Find e € Z such that ay(e,e) = ¢4(e) foralle e Z. (37)
The bilinear and linear forms are expressed, respectively, as
. c?
ay(e,e) E/ H($)| Ve - Ve + nwee | dQ (38)
fol nw
and
6@ = [ i@)medo - / 5(¢)|Vlgede. (39)
Qr Qr

4. Topological shape optimization
4.1. Formulation of topological shape optimization

The objective of topological shape optimization is to find an optimal layout that minimizes the general-
ized compliance I1,(e) of the system under prescribed loadings. The topological shape optimization prob-
lem is stated as

Minimize  IT,(e) = [ H($)nedQ — /Q 3(¢)|V|ged, (40)

Q

Subject to H()dQ < My, (41)

o]

where M., is an allowable volume. The function ¢, playing a role of the design variable and representing
the current implicit boundary, is varying as

b.=¢+19, @Y, (42)
where ¢ indicates the direction of boundary variations and belongs to the function space V.
Y={pecC'(2): ¢=0o0nTI%}. (43)

4.2. Adjoint design sensitivity analysis

Take Fréchet derivative of Eq. (37) with respect to 7 in the direction of ¢ as
ag(e,e) =l (e) — djy(e;e) foralleeZ, (44)

where

CZ
ay(e,e) = /Q o(¢) <n_cgu Ve Ve + nweé) pdQ (45)
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and

Vo). (Vo).
%(é)E/Q 5(¢)né<pd9—/g {5'(¢)|V¢|¢+5(¢)%

= /QI o(¢9) |:TE€+ V- {qelgilH(de-l— /rI 5(¢)qe|§i|-nq)df

— [ 8(¢)lne - V{ge} - n — {ge}pdQ - / 5(¢)gepdr. (46)

Q

}qédQ

Consider a generalized compliance functional shown in Eq. (40). Then, we come up with the sensitivity of
the generalized compliance, taking advantage of Eq. (46) as

dI1 .

diyle) _ H(¢p)ne' dQ — /

d'E Q Q

5(9)|Vlge dQ + / 3()lme — V{ge} - n — (g} pdQ

- [ s@aepar. (47)

Define an adjoint equation for the power flow problems. Since ¢ € Z, regarding the implicit dependence
terms on the design variations as an adjoint load, the adjoint equation is formulated as

ag(22) = | H(¢p)mAdQ — / 5($)|VplgidQ forall 1€ Z. (48)
Qr Q
Since ¢’ € Z, Eq. (48) can be rewritten as
ay(l,e) = | H(p)mne'dQ — / 3(¢)|Vlge'dQ for all & € Z. (49)
Qr Q
Also, since 4 € Z, Eq. (44) can be rewritten as
ag(€,4) = ly(2) —ay(e,4) forall LeZ. (50)
Since a,(e,®) is a symmetric operator, Egs. (49) and (50) are equivalent so that the following equation holds:
) H(¢p)me' dQ — /Q 5(9)|Vplge' dQ = €,(2) — dly(e, 2). (51)
1 1

Substituting Eq. (51) into Eq. (47), we have the following expression:

T - dyfe) + [ o(@)reTigehn—rlgelloda- [ o(ggepdr

dT ol

= 5(¢))[n/l—V{q/1}-n—;c{q/l}]q)dQ—/F 5(4))q)»qodlﬂ—/g o(¢) (;—ZV@VA—&—nwei) @dQ

Q

+ / 5(¢)[ne — V{ge} -n — k{gelpdQ - / 5(d)geqdl

:/915(‘“

+/r 5(¢)q(e+},)(pdl”:/9 5(¢)E¢(e,i)qod9+/ o(¢)g(e+A)edI. (52)

It

@dQ

2
nle+1)—V{qle+ 1)} -n—rgle+2)— (n—(iVe -VAi+ nwek)
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Since the following holds,

o(¢p(x)) =0 for some x & I'y (53)
and
_0¢p 0¢pon
P = T8, 5 0 for the other x € I';. (54)

Eq. (52) can be rewritten as

dIl (e - ,
A [ s)zale e (59)
T ol
Next, consider the constraint of allowable material volume as
n(e)= | A(g)de (56)
Q
Its derivative with respect to the boundary variation is derived as
dm
"D [ sg)pan. (57)
T Q

4.3. Optimality conditions

The velocity field V,(x) defines the propagation speed of all level sets of the embedding function ¢(x)
along the outward normal direction. The velocity should be determined such that it reduces the generalized
compliance of the system while satisfying the requirement of allowable material volume. Define a Lagrang-
ian function A for the constrained optimization problems as

AP, 1, 5) = Hy(e) + p{m(d) + 5" — Mnax}
=/ H(dﬁ)nedQ—/Q 5(¢)|qu|qedQ+u{/Q H(¢)dQ + s* —Mmax}, (58)

where M.y, s, and u are the allowable material volume, a slack variable to convert the inequality con-
straint to the equality one, and a Lagrange multiplier, respectively. Applying the Kuhn-Tucker optimality
conditions leads to

dA(gps) _ dllye) | dm(9)

(i) 2P = | s Es e + moar =0 (59)

(i) L2 [ 1(4) a0+ 8 = My =0, (60)
du ol

(i) W = 2us = 0, (61)

(iv) u = 0. (62)

Let

s {0 if [, H(¢)dQ < Mgy,

poif fo H($)dQ > My,
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the optimality conditions of Egs. (59)—(62) are then reduced to

dA(9, u,s) = | d(P){Z4(e, )+ EFpdQ = 0. (64)

dr ol

4.4. Computation of velocity field

Now that the distance function ¢(x) is normal to the boundary and the only normal velocity has influ-
ence on the result of shape optimization (Haug et al., 1986), the domain variation can be expressed, using
the normal velocity V,(x), as

Q. = (Id + tV,) (). (65)

Using Taylor series expansion in the normal direction of velocity field, the perturbed Lagrangian function
can be expressed as

A(Q) = A{(Xd + V) ()} = A(Qy) + A (Q) (V) + -, (66)
where the sensitivity of the Lagrangian function is expressed as

A(@) = [ 6(d){Es(e;4) + (PpdQ. (67)

Q

If we take the boundary variation in the descent direction of the sensitivity as

V,= _{545(67/1) + é}(p7 (68)
then Eq. (66) can be written as

A@) = A(@) ~ [ 3(g){(E(e2) + P ePdR+ O 4 - (69)

Q

Thus, the decrease of generalized compliance functional is guaranteed while satisfying the requirement of
allowable material volume.

4.5. Determination of Lagrange multiplier

To determine a positive Lagrange multiplier &, which implies the condition of either active or violated
volume constraint, presume that the constraint is active.

H(¢)dQ = M pay. (70)
Q
Taking derivative of Eq. (70) with respect to t and using Egs. (33) and (68), the following holds.
| s@valr.eae =~ | s@IVal(zse. )+ oda o ()
I I

Thus, the Lagrange multiplier is determined by

Jo, 0(D)IVP|Zy(e, 1) dQ
Jo, 0()[VolpdQ
The series of embedding the function ¢(x) generated by the optimization process represent the descent ser-

ies of the topology optimization problem. This method creates no holes and boundaries. Furthermore, it
converges smoothly to a local minimum so that it strongly depends on the initial topology.

5:_

(72)
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5. Numerical examples

In this section, some numerical examples are shown to demonstrate the accuracy of the developed sen-
sitivity analysis method and the applicability of the developed topological shape optimization method. The
topology optimization results obtained from the developed level set method are compared with those from
the established density method. For the numerical implementation, we use the approximate Heaviside and
Dirac-delta functions (as shown in Fig. 3)

o if x<—4,

R 3(1—a) (x X l+a .

Hr)=4 2" (2_ T )V 2% 4 f<x<a, 73

(x) a (A 3A3>+ 7 i x < (73)
1 ifx >4
and

3(1 —a) 2\ .
A S A O <

5(x) = Y <1 A2> if x| < 4, (74)
0 if x| > 4,

where o is a small positive number to avoid numerical singularity. 4 is the support length of Heaviside and
Dirac-delta functions. Due to the finite length of support in these numerical functions, the domain for the
numerical integration is slightly larger than the actual one.

5.1. Example 1: Verification of design sensitivity with respect to boundary variations

The purpose of this example is to verify the accuracy of the derived sensitivity expressions. The model
shown in Fig. 4 is 66 mm long, 44 mm wide, and 1 mm thick. The finite element model is composed of 3600
plane elements and 3723 nodes. It is subject to the rate of internal energy generation of 10’ W/m? at the
center, the energy flux of 500 W/m at the middle of top and bottom sides, and prescribed energy boundary
of 0 J/m” at each corner and the middle of left and right sides. The frequency of excitation is 1000 Hz.
The following material properties are used: Young’s modulus of 195 GPa, Poisson’s ratio of 0.28, damping
factor of 0.1, material density of 7800 kg/m®.

31-a)
4A

-AlA -AlA
(@) (b)

Fig. 3. Approximation of functions: (a) Heaviside function and (b) Dirac-delta function.
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0J/m* 0 J/m’

O00D OO0 O
00'000Ql

0,0 GO 0O 0O
OO0 000

®

0J/m

@
500W /m
0 J/m? 0J/m?
Fig. 4. Model for sensitivity verification.
Table 1
Comparison of generalized compliance sensitivities
& i /810 i i /810

@A) 6.63179E+01 6.60396E+01 100.4214 F) 9.42135E+00 9.39466E+00 100.2841
(B) 7.54306E—01 7.52042E—01 100.3010 © 3.84339E+00 3.83304E+00 100.2701
(© 6.75008E—01 6.72850E—01 100.3207 H) 5.11770E+00 5.10376E+00 100.2730
D) 1.48709E+00 1.48257E+00 100.3045 D 7.93957E+00 7.91840E+00 100.2674
E) 4.73523E-01 4.72007E—01 100.3211 (D 6.63179E+01 6.60396E+01 100.4214

For the finite difference sensitivity, the boundary is perturbed by 1% of the length of grid used to solve
the H-J equation. Arbitrary 10 points on the boundary, @) through @), are selected to compare the ana-
Iytical sensitivities with finite difference ones. In Table 1, the first and second columns represent the analyt-
ical sensitivity obtained from Eq. (55) and the finite difference sensitivity, respectively. The third column
represents the percent agreement between the analytical and finite difference sensitivities. At all the points,
excellent agreements are observed.

5.2. Example 2: Topological shape optimization (Simply connected topology)

In Fig. 5, the model is subject to the rate of internal energy generation of 10’ W/m? at the center and the
prescribed energy boundary of 0 J/m? at four corners. Also, the design domain, boundary, and loading con-
ditions are illustrated. A thick line indicates the initial boundary I';. The objective function is to minimize
the generalized compliance under the constraint of allowable material volume, 30% of the original one.

In Fig. 6, we compare the optimization histories obtained by applying the level set method to the initial
design domain without any holes (a) and with some holes (b) inside the domain. Also, the column (c¢) shows
the optimization history obtained from the established density method. The number in each figure indicates
the iteration counter during the optimization process. The density method, with the penalty parameter of 2,
yields the optimal material distribution at 241 iterations as shown in (c). As for the level set method, it gives
a similar optimal shape to the result obtained from the density method. As the optimization progresses, the
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0J/m? 0J/m?
||
8
107 W/ m?
0J/m 0J/m?

Fig. 5. Design domain and boundary conditions.

OO00O00O0
O0O0O00O0
O0OO0O00O0
O00O00O0

(40)

(72)

(a) (b) (c)

Fig. 6. History of shape changes: (a) level set method (initial domain without holes), (b) level set method (initial domain with holes)
and (c) density method.

adjacent holes in (b) are merged one another to finally yield an identical result shown in (a). In this example,
the final optimal shape is a simply connected domain so that (a) and (b) give the identical result. Also, they
have similar convergence rates but are slower compared with the density method in (c).
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Table 2
Comparison of optimization results

Case (a) Case (b) Case (c)
Generalized compliance 5.772 5.766 5.928
Agreement (%) 97.371 97.262 100.000
Number of iterations 795 644 241

In Table 2, the generalized compliance and computing cost are compared. The percent differences of gen-
eralized compliance in (a) and (b) with reference to the density method (c) are less than 3%. As for the com-
puting cost, the density method (¢) requires the least number of iterations.

Fig. 7 shows optimization histories without initial holes (a), and with initial holes (b). In each case, the
volume constraint is satisfied while minimizing the generalized compliance.

In Fig. 8§ the design domain, boundary, and loading conditions are illustrated. The plane model is 44 mm
long, 44 mm wide, and 1 mm thick. The finite element model for the response analysis is composed of 2500
plane elements and 2601 nodes. It is subject to the rate of internal energy generation of 10’ W/m? at the

1.00 8.00
. —— Yolume Fraction
72 iter . "
0.90 4 ----- Generalized Compliance 1 7.00
0.80
77777777 795 iter. 4 .00
oo b\
g
5 060 4 5.00 E
= g
g 8
&= 050 400 o
o i
5 =
2 040 ©
> 4 3.00 %
0.30
2,00
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Fig. 7. Optimization histories in level set models (a) and (b).
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Fig. 8. Design domain and boundary conditions.

center and the prescribed energy boundary of e = 0 J/m? along four sides. The thick line indicates the initial
boundary I'1. The objective function is to minimize the generalized compliance under the constraint of
allowable material volume whose fraction is 50% of the original one.

Fig. 9 shows the histories of implicit boundaries obtained by applying the level set method to the initial
design domain without any holes (a), with some holes (b) inside the domain. The (c) shows the result ob-
tained from the established density method. The density method, with the penalty parameter of 2, yields the
optimal material distribution at 126 iterations as shown in (c). As for the level set method, as the optimi-
zation progresses, the adjacent holes in (b) are merged to finally yield an identical result shown in (a). In this
example, the final optimal shape is also a simply connected domain so that (a) and (b) give an identical
result and have similar convergence rates.

Fig. 10 shows optimization history without initial holes (a), and with initial holes (b). In each case, the
volume constraint is satisfied while minimizing the generalized compliance. In Table 3, the generalized com-
pliance and computing cost are compared. The percent differences of generalized compliance in (a) and (b)
with reference to the density method (c) are less than 2%. As for the computing cost, similarly to the pre-
vious example, it takes less computing time with initial holes than without the holes. Thus, we see that the
proper initial modeling of the boundary is very important for the efficient computation.

5.3. Example 3: Topological shape optimization ( Multiply connected topology)

In Fig. 11, the design domain, boundary, and loading conditions are illustrated. The problem definition
is similar to the model shown in Fig. 5, but additional energy flux of 500 W/m is applied at the middle of
top and bottom sides. The thick line also indicates the initial boundary I'y. The objective is to minimize the
generalized compliance under the constraint of allowable material volume whose fraction is 40 % of the
original one.

Fig. 12 shows the histories of implicit boundaries obtained by applying the level set method to the initial
design domain without any holes (a), with some holes (b) inside the domain. The (¢) shows the result ob-
tained from the established density method. The density method, with the penalty parameter of 2, yields the
optimal material distribution at 225 iterations as shown in (c). This example shows the importance of the
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Fig. 9. History of shape changes: (a) level set method (initial domain without holes), (b) level set method (initial domain with holes)
and (c) density method.

initial modeling of the boundary. In column (a) and (b), we can see that an initial modeling significantly
affects the final shape of boundary. As shown in (¢), a density method suggests a multiply connected topo-
logical layout. If an initial model has no internal holes, the final optimal shape does not include any internal
holes since the developed topology optimization method using the level set method never creates new inter-
nal holes. However, the model with initial internal holes can create suitable internal boundary, so the
optimal shapes of column (b) and (c) is nearly identical. Thus, we see that the proper initial modeling of
the boundary, i.e. the use of sufficient number of holes, is very important for the optimal result. In gen-
eral, the optimal shape using the level set method is strongly dependent on the initial modeling of the
boundary.

Fig. 13 shows the optimization history without initial holes (a), and with initial holes (b). In each case,
the volume constraint is satisfied while minimizing the generalized compliance. As for the computing cost,
this example requires 405 iterations with initial holes (b) whereas 296 iterations without initial holes (a).
However, it is not meaningful to compare both results directly since we obtain different local optima.
The density method (c) requires the least number of iterations.

In Table 4, the generalized compliance and computing cost are compared. The percent agreements of
generalized compliance in (a) and (b) with reference to the density method (c) are 133% and 97%, respec-
tively. In the case of (a), due to the lack of initial holes, the optimization result is significantly different from
the others. Also different generalized compliance is obtained as well. Thus, we notice that the proper initial
modeling of the boundary is very important for the optimal result.
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Fig. 10. Optimization histories in level set models (a) and (b).

Table 3
Comparison of optimization results

Case (a) Case (b) Case (c)
Generalized compliance 1.663 1.661 1.686
Agreement (%) 98.620 98.498 100.000
Number of iterations 128 86 126

In this example, the normal velocity field is determined by
V,=—{E(z 1) + }o.

In Fig. 14, the variation of boundary (a) and the corresponding velocity field (b) are plotted during the
optimization. The Fig. 14(b) indicates the magnitude of normal velocity. After convergence, the magnitude
of normal velocity vanishes throughout the whole domain except the region where the loading and bound-
ary conditions are applied. This is mainly due to the requirement of function space for the level set function
shown in Egs. (42) and (43) as

b.=¢+1p, @c¥ where ¥ ={pecC'(Q):¢=0o0nT%}
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Table 4
Comparison of optimization results

Case (a) Case (b) Case (c)
Generalized compliance 28.551 20.810 21.493
Agreement (%) 132.838 96.825 100.000
Number of iterations 296 405 225

To investigate the effectiveness of topology optimization method, the distributions of energy density for
the original and optimal models are compared. To represent the volume fraction, we introduce a normal-
ized bulk material density function that has a continuous variation from zero to one, taking the value of 1.0
for solid material and 0.0 for void. For the original model, the bulk material density is reduced to 0.4 to
represent the volume requirement, the original material volume of 40%. Fig. 15(a) shows the distribution
of energy density for the original model that has the bulk material density of 0.4 and Fig. 15(b) for the opti-
mal model. The maximum of energy density is significantly reduced by 21% under the same amount of

material volume.
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Fig. 14. Boundary and velocity field during optimization: (a) variation of boundary and (b) variation of velocity field.
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Fig. 15. Distribution of energy density at 1000 Hz: (a) original model (maximum =0.5017J/m? and (b) optimal model
(maximum = 0.3958 J/m?).
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6. Conclusions

A topological shape optimization method for power flow problems in steady state is developed using the
level set method. Since the implicit moving boundary is used, it is easy to represent the shape variations and
there is no need to re-parameterize after significant shape changes during the optimization. Necessary de-
sign gradients are computed very efficiently using the adjoint sensitivity analysis method. The overall com-
puting cost for the topology optimization is moderately expensive compared with the established density
method. For the optimization process, the boundary velocity to solve the Hamilton—Jacobi equation is de-
rived from Kuhn-Tucker optimality condition for the Lagrangian function. Some illustrative numerical
examples show that the level set method yields the similar optimal shape to the established density ap-
proach. Even though the domain experiences significant shape changes, the level set method always gives
a smooth boundary. Also, the use of sufficient number of initial holes in the domain is very important to get
the reasonable results since this method creates no holes during the optimization.
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